Passes through origin $(0,0)$, radius $r=3$. Center on positive x-axis means $k=0$ and $h > 0$.
Since it passes through origin, distance from Center $(h,0)$ to $(0,0)$ is radius.
$h = 3$. Center is $(3,0)$.
Equation: $(x-3)^2 + y^2 = 3^2$.
Ans: $(x-3)^2 + y^2 = 9$
Points $(1,0), (-1,0), (0,1)$.
$(1,0)$ and $(-1,0)$ are equidistant from y-axis, center lies on $x=0$.
Let equation be $x^2+y^2+2fy+c=0$ (since center on y-axis, $g=0$).
Passes $(1,0)$ $\Rightarrow$ $1+c=0$ $\Rightarrow$ $c=-1$.
Passes $(0,1)$ $\Rightarrow$ $1+2f+c=0$ $\Rightarrow$ $1+2f-1=0$ $\Rightarrow$ $f=0$.
Center $(0,0)$, $c=-1$. Eq: $x^2+y^2-1=0$.
Ans: $x^2 + y^2 = 1$
Old Circle: $x^2 + y^2 - 6x + 12y + 15 = 0$. Center $(3, -6)$.
Old Radius $r = \sqrt{9 + 36 - 15}$ $= \sqrt{30}$. Area $A = 30\pi$.
New Circle is concentric $\Rightarrow$ Center $(3, -6)$.
New Area $= 2 \times 30\pi$ $= 60\pi$ $\Rightarrow$ $R^2 = 60$.
Equation: $(x-3)^2 + (y+6)^2 = 60$.
Ans: $(x-3)^2 + (y+6)^2 = 60$
$x^2 + y^2 + 4x - 6y + 13 = 0$.
Radius $r = \sqrt{g^2+f^2-c}$ $= \sqrt{(2)^2 + (-3)^2 - 13}$ $= \sqrt{4 + 9 - 13}$ $= \sqrt{0}$ $= 0$.
Since radius is 0, it is a point circle.
Ans: Proved
For second degree equation to be a circle, coefficient of $x^2$ must equal coefficient of $y^2$.
$k = 1$.
Ans: $k=1$
Passes through origin $(0,0)$.
Substitute $x=0, y=0$ into equation: $0^2 + 0^2 + 0 + 0 + c = 0$ $\Rightarrow$ $c=0$.
Ans: $c=0$
General form passing through $(0,0) \Rightarrow c=0$.
Passes through $(a,0)$ $\Rightarrow$ $a^2 + 2ga = 0$ $\Rightarrow$ $g = -a/2$.
Passes through $(0,b)$ $\Rightarrow$ $b^2 + 2fb = 0$ $\Rightarrow$ $f = -b/2$.
Eq: $x^2 + y^2 - ax - by = 0$.
Ans: $x^2 + y^2 - ax - by = 0$
Line $4x + 3y = 24$.
At x-axis ($y=0$), $4x=24 \Rightarrow x=6$. Point A$(6,0)$.
At y-axis ($x=0$), $3y=24 \Rightarrow y=8$. Point B$(0,8)$.
Diameter ends $(6,0)$ and $(0,8)$.
$(x-6)(x-0) + (y-0)(y-8) = 0$.
Ans: $x^2 + y^2 - 6x - 8y = 0$
Circle center from eq: $2g=-4 \to g=-2 \Rightarrow C(2, 3)$.
One end $A(3,4)$. Let other end be $B(x,y)$.
Center is midpoint: $\frac{3+x}{2}=2 \Rightarrow x=1$. $\frac{4+y}{2}=3 \Rightarrow y=2$.
Ans: $(1, 2)$
Circle $x^2 + y^2 = 25$. Line $y = 3$.
Intersection: $x^2 + 3^2 = 25$ $\Rightarrow$ $x^2 = 16$ $\Rightarrow$ $x = \pm 4$.
Points are $(-4,3)$ and $(4,3)$. Distance $= 4 - (-4) = 8$.
Ans: 8 units
Center $(0,0)$, Radius $r=5$. Line $3x+4y-25=0$.
Dist $d = \frac{|3(0) + 4(0) - 25|}{\sqrt{3^2+4^2}}$ $= \frac{25}{5}$ $= 5$.
Since $d = r$, it is a Tangent.
Ans: Tangent