CBSE Class 11 Physics • Chapter 01 • Detailed Notes
Chapter Overview
This chapter covers the fundamental concepts of Units and Measurements. Ensure you understand the definitions and derivations thoroughly.
1. Gravitational Force: Mutual attraction between masses. Weakest force but infinite range. ($F_g \propto m_1m_2/r^2$).
2. Electromagnetic Force: Force between charged particles. Stronger than gravity. Infinite range.
3. Strong Nuclear Force: Holds protons/neutrons in nucleus. Strongest force. Short range ($10^{-15}$ m). Charge independent.
4. Weak Nuclear Force: Involved in $\beta$-decay. Weak but stronger than gravity. Very short range ($10^{-16}$ m).
Relative Strength Order:
Strong Nuclear ($1$) > Electromagnetic ($10^{-2}$) > Weak Nuclear ($10^{-13}$) > Gravitational ($10^{-39}$).
Physical Quantity: A quantity that can be measured and expressed in numerical value with appropriate unit.
Every physical quantity = Numerical value × Unit ($Q = nu$)
Example: Length of rod = 5 m (5 is numerical value, m is unit). Note that $n \propto 1/u$.
1. Fundamental (Base) Quantities: Quantities that cannot be expressed in terms of other quantities.
| S.No. | Quantity | SI Unit | Symbol |
|---|---|---|---|
| 1 | Length | metre | m |
| 2 | Mass | kilogram | kg |
| 3 | Time | second | s |
| 4 | Electric Current | ampere | A |
| 5 | Temperature | kelvin | K |
| 6 | Amount of Substance | mole | mol |
| 7 | Luminous Intensity | candela | cd |
Common SI Prefixes:
| Power | Prefix | Symbol | Power | Prefix | Symbol |
|---|---|---|---|---|---|
| $10^{18}$ | exa | E | $10^{-1}$ | deci | d |
| $10^{15}$ | peta | P | $10^{-2}$ | centi | c |
| $10^{12}$ | tera | T | $10^{-3}$ | milli | m |
| $10^9$ | giga | G | $10^{-6}$ | micro | $\mu$ |
| $10^6$ | mega | M | $10^{-9}$ | nano | n |
| $10^3$ | kilo | k | $10^{-12}$ | pico | p |
| $10^2$ | hecto | h | $10^{-15}$ | femto | f |
| $10^1$ | deca | da | $10^{-18}$ | atto | a |
2. Derived Quantities: Quantities expressed in terms of base quantities.
Examples: Area ($L^2$), Velocity ($LT^{-1}$), Force ($MLT^{-2}$), Energy ($ML^2T^{-2}$).
Dimensions: Powers to which the base quantities are raised to represent a derived quantity.
Dimensional Formula: Expression showing how a physical quantity depends on base quantities.
Notation: $[Q] = [M^a L^b T^c]$.
Calculus Notation: Dimensions of differential coefficients and integrals:
Examples of Dimensional Formulas:
Dimensionless Quantities: Quantities with no dimensions (all powers = 0).
Principle of Homogeneity: In a correct equation, dimensions of all terms on both sides must be identical.
Example: Check $s = ut + \frac{1}{2}at^2$.
LHS: $[s] = [L]$
RHS: $[ut] = [LT^{-1}][T] = [L]$ and $[\frac{1}{2}at^2] = [LT^{-2}][T^2] = [L]$.
All terms have dimension $[L]$, so equation is dimensionally correct.
Q: Check dimensional correctness of: $v^2 = u^2 + 2as$
Solution:
All terms match. Equation is dimensionally correct.
Method: If quantity $Q$ depends on $a, b, c$, assume $Q = k a^x b^y c^z$. Equate dimensions to solve for $x, y, z$.
Example: Time period $T$ of pendulum depends on length $L$ and gravity $g$.
Step 1: $T = k L^x g^y$
Step 2: $[T] = [L]^x [LT^{-2}]^y = [L^{x+y} T^{-2y}]$
Step 3: Equate powers. For T: $1 = -2y \Rightarrow y = -1/2$. For L: $0 = x+y \Rightarrow x = -y = 1/2$.
Step 4: $T = k L^{1/2} g^{-1/2} = k \sqrt{\frac{L}{g}}$.
Q: Frequency ($f$) of string depends on length ($L$), tension ($T$), and mass per unit length ($\mu$). Derive formula.
Solution:
Assume $f = k L^a T^b \mu^c$. Dimensions: $[f]=[T^{-1}]$, $[T]=[MLT^{-2}]$ (Force), $[\mu]=[ML^{-1}]$.
$[T^{-1}] = [L]^a [MLT^{-2}]^b [ML^{-1}]^c = M^{b+c} L^{a+b-c} T^{-2b}$
Result: $f = k L^{-1} T^{1/2} \mu^{-1/2} = \frac{k}{L} \sqrt{\frac{T}{\mu}}$.
Q: Convert 1 Newton ($10^5$ dynes) verification.
Solution: $[F] = [MLT^{-2}]$. SI ($kg, m, s$) to CGS ($g, cm, s$).
$n_2 = 1 \left[\frac{1kg}{1g}\right]^1 \left[\frac{1m}{1cm}\right]^1 \left[\frac{1s}{1s}\right]^{-2} = 1 [1000][100][1] = 10^5$.
So, 1 N = $10^5$ dynes.
Limitations of Dimensional Analysis:
Measurement: Comparison of unknown quantity with a known standard.
Error: Difference between true value and measured value ($E = A_m - A_t$).
Accuracy: Closeness to true value.
Precision: Closeness of repeated measurements (Limit of resolution).
Example: True value = 10.0. Measurements: (10.1, 9.9) -> Accurate. (12.1, 12.0) -> Precise but not Accurate.
1. Systematic Errors: Consistent direction (always + or -). Causes: Instrumental (zero error), Experimental technique, Environmental.
2. Random Errors: Irregular fluctuations. Reduced by averaging $n$ readings ($\text{Error} \propto 1/\sqrt{n}$).
3. Gross Errors: Carelessness (reading wrong scale).
Let readings be $a_1, a_2, ..., a_n$.
Mean: $\bar{a} = \frac{\sum a_i}{n}$. (Best estimate of true value)
Absolute Error: $\Delta a_i = |a_i - \bar{a}|$.
Mean Absolute Error: $\Delta \bar{a} = \frac{\sum |\Delta a_i|}{n}$.
Relative Error: $\delta a = \frac{\Delta \bar{a}}{\bar{a}}$.
Percentage Error: $\% \text{Error} = \delta a \times 100\%$.
Q: Readings: 25.2, 25.4, 25.1, 25.3, 25.0 cm.
Solution:
Mean $\bar{a} = 25.2$ cm.
Errors: 0.0, 0.2, 0.1, 0.1, 0.2. Mean Abs Error $\Delta \bar{a} = 0.6/5 = 0.12$.
Result: $25.2 \pm 0.12$ cm.
% Error: $(0.12/25.2) \times 100 \approx 0.48\%$.
1. Sum/Difference ($Z = A \pm B$):
Max Absolute Error: $\Delta Z = \Delta A + \Delta B$. (Errors always ADD).
2. Product/Quotient ($Z = AB$ or $A/B$):
Max Relative Error: $\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$.
3. Power ($Z = A^n$):
Relative Error: $\frac{\Delta Z}{Z} = n \frac{\Delta A}{A}$.
Q: Kinetic Energy $K = \frac{1}{2}mv^2$. $m=5.0 \pm 0.1$, $v=10.0 \pm 0.2$.
Solution: $\frac{\Delta K}{K} = \frac{\Delta m}{m} + 2\frac{\Delta v}{v}$.
$\frac{\Delta K}{K} = \frac{0.1}{5} + 2(\frac{0.2}{10}) = 0.02 + 0.04 = 0.06$.
$K = 0.5 \times 5 \times 100 = 250$ J. $\Delta K = 0.06 \times 250 = 15$.
Answer: $250 \pm 15$ J.
Rules for Counting SF:
Rounding Off Rules:
Arithmetic Operations:
Add/Sub: Result matches least decimal places. ($12.11 + 18.0 = 30.11 \to 30.1$)
Mul/Div: Result matches least significant figures. ($2.5 \times 1.25 = 3.125 \to 3.1$)
Definition: Power of 10 closest to the magnitude of quantity. ($N = n \times 10^x$).
Rule: If $0.5 \le n < 5$, order of magnitude is $10^x$.
If $n \ge 5$, increase power by 1.
Vernier Calipers: Instrument to measure internal/external dimensions and depths to 0.1 mm precision.
Components: Main Scale (MS), Vernier Scale (VS), Jaws, Depth bar.
Principle: 10 VSD = 9 MSD. (Using $1 \text{ MSD} = 1$ mm).
Least Count (LC): $1 \text{ MSD} - 1 \text{ VSD} = 1 - 0.9 = 0.1$ mm.
Steps to Read:
Zero Error:
Q: MSR = 3.2 cm. 4th VS division coincides. LC = 0.01 cm.
Solution: Total = $3.2 + (4 \times 0.01) = 3.24$ cm.
Screw Gauge: Precision instrument (LC $\approx 0.01$ mm) based on screw principle.
Components: Sleeve (Main Scale), Thimble (Circular Scale), Ratchet.
Principle: Based on screw motion.
Pitch: Distance moved in 1 rotation (e.g., 0.5 mm).
Q: Pitch=1 mm, Div=100. MSR=3 mm. CSR=47. Zero Error=+0.03 mm.
Solution: LC = 1/100 = 0.01 mm.
Reading = $3 + (47 \times 0.01) = 3.47$ mm.
Corrected = $3.47 - 0.03 = \mathbf{3.44 \text{ mm}}$.
Spherometer: Instrument to measure radius of curvature of spherical surfaces.
Principle: Based on screw principle.
🚀 MASTER TIP: Thoroughly practice the calculation of Least Count for both instruments. This is the most common source of error in practicals and numericals!