System of Particles and Rotational Motion

CBSE Class 11 Physics • Chapter 06

Chapter Overview

This chapter covers the fundamental concepts of System of Particles and Rotational Motion. Ensure you understand the definitions and derivations thoroughly.

06.2 Center of Mass (CM)

Definition: Point where entire mass of the system is supposed to be concentrated.

$$ \vec{R}_{CM} = \frac{\sum m_i \vec{r}_i}{\sum m_i} $$

Motion of CM:

$M \vec{V}_{CM} = \sum m_i \vec{v}_i = \vec{P}_{total}$.

$M \vec{A}_{CM} = \vec{F}_{ext}$. (Internal forces cancel out).

06.6 Angular Velocity & Acceleration

Practice Problem 1

Q: Two particles of mass 1kg and 2kg are at (1,0) and (2,2) respectively. Find CM.

Ans: $x_{cm} = \frac{1(1) + 2(2)}{1+2} = \frac{5}{3}$.
$y_{cm} = \frac{1(0) + 2(2)}{1+2} = \frac{4}{3}$.
CM is at $(\frac{5}{3}, \frac{4}{3})$.

06.7 Torque and Angular Momentum

O r F $\theta$

Figure 6.1: Torque $\vec{\tau} = \vec{r} \times \vec{F}$

Relation: $\vec{\tau} = \frac{d\vec{L}}{dt}$. (Analogous to $F = dp/dt$).

Conservation of Angular Momentum: If $\tau_{ext} = 0$, then $\frac{dL}{dt} = 0 \Rightarrow L = \text{constant}$.

$I_1 \omega_1 = I_2 \omega_2$. (e.g., Ice skater spinning).

06.9 Moment of Inertia

Theorems:

06.2 Center of Mass (CM)

Definition: Point where entire mass of the system is supposed to be concentrated.

$$ \vec{R}_{CM} = \frac{\sum m_i \vec{r}_i}{\sum m_i} $$

Motion of CM:

$M \vec{V}_{CM} = \sum m_i \vec{v}_i = \vec{P}_{total}$.

$M \vec{A}_{CM} = \vec{F}_{ext}$. (Internal forces cancel out).

06.6 Angular Velocity & Acceleration

Practice Problem 1

Q: Two particles of mass 1kg and 2kg are at (1,0) and (2,2) respectively. Find CM.

Ans: $x_{cm} = \frac{1(1) + 2(2)}{1+2} = \frac{5}{3}$.
$y_{cm} = \frac{1(0) + 2(2)}{1+2} = \frac{4}{3}$.
CM is at $(\frac{5}{3}, \frac{4}{3})$.

06.7 Torque and Angular Momentum

O r F $\theta$

Figure 6.1: Torque $\vec{\tau} = \vec{r} \times \vec{F}$

Relation: $\vec{\tau} = \frac{d\vec{L}}{dt}$. (Analogous to $F = dp/dt$).

Conservation of Angular Momentum: If $\tau_{ext} = 0$, then $\frac{dL}{dt} = 0 \Rightarrow L = \text{constant}$.

$I_1 \omega_1 = I_2 \omega_2$. (e.g., Ice skater spinning).

06.9 Moment of Inertia

Theorems:

06.11 Dynamics & Rolling Motion

Rotational Analogues:

Rolling without Slipping:

Condition: $v_{cm} = R\omega$.

Total KE = Translational + Rotational.

$$ K_{total} = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}Mv_{cm}^2 (1 + \frac{k^2}{R^2}) $$
$v_{cm}$ $\omega$ Rolling Motion ($v = \omega R$)

Figure 6.2: Rolling Motion without Slipping

Practice Problem 2

Q: A solid cylinder of mass 2kg and radius 0.1m rolls without slipping at 3 m/s. Find total KE.

Ans: For solid cylinder, $I = \frac{1}{2}MR^2 \Rightarrow k^2/R^2 = 1/2$.
$K = \frac{1}{2}Mv^2 (1 + \frac{k^2}{R^2}) = \frac{1}{2}(2)(3^2)(1 + 0.5) = 9 \times 1.5 = \mathbf{13.5 \text{ J}}$.

Study Tip: Master the derivations in this chapter as they are frequently asked in exams. Practice numericals based on the formulas.