Ratio and Proportion

ICSE Class 10 Mathematics • Chapter 05

1. Basic Definitions

Ratio: Comparison of two quantities of the same kind. Written as a:b or $\frac{a}{b}$

Proportion: Equality of two ratios. If $\frac{a}{b} = \frac{c}{d}$, then a, b, c, d are in proportion.

Continued Proportion: a:b = b:c, i.e., $b^2 = ac$

2. Types of Proportionals

Type Condition Formula
Mean Proportional a:x = x:b $x = \sqrt{ab}$
Third Proportional a:b = b:x $x = \frac{b^2}{a}$
Fourth Proportional a:b = c:x $x = \frac{bc}{a}$

Example 1: Find the mean proportional between 3 and 27.

Mean proportional = $\sqrt{3 \times 27} = \sqrt{81} = 9$

Example 2: Find third proportional to 4 and 12.

Let third proportional = x. Then 4:12 = 12:x

$x = \frac{12^2}{4} = \frac{144}{4} = 36$

3. Properties of Proportion

If $\frac{a}{b} = \frac{c}{d}$, then:

Property Name Statement Result
Invertendo Invert both ratios $\frac{b}{a} = \frac{d}{c}$
Alternendo Swap middle terms $\frac{a}{c} = \frac{b}{d}$
Componendo Add 1 to both sides $\frac{a+b}{b} = \frac{c+d}{d}$
Dividendo Subtract 1 from both sides $\frac{a-b}{b} = \frac{c-d}{d}$
Componendo-Dividendo Combine both $\frac{a+b}{a-b} = \frac{c+d}{c-d}$

Componendo-Dividendo is the MOST USED property in exams!

If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+b}{a-b} = \frac{c+d}{c-d}$

4. The k-Method

Technique: If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$

Then: $a = bk$, $c = dk$, $e = fk$

This helps convert ratio problems into algebraic expressions!

Example 3: If $\frac{a}{3} = \frac{b}{4} = \frac{c}{5}$, find $\frac{a+b+c}{3a-b+c}$

Solution: Let each ratio = k

$a = 3k$, $b = 4k$, $c = 5k$

$\frac{a+b+c}{3a-b+c} = \frac{3k+4k+5k}{9k-4k+5k} = \frac{12k}{10k} = \frac{6}{5}$

5. Using Componendo-Dividendo

Example 4: If $\frac{3x+4y}{3x-4y} = \frac{5}{3}$, find $\frac{x}{y}$

Solution: Apply Componendo-Dividendo

$\frac{(3x+4y)+(3x-4y)}{(3x+4y)-(3x-4y)} = \frac{5+3}{5-3}$

$\frac{6x}{8y} = \frac{8}{2}$

$\frac{x}{y} = \frac{8 \times 8}{2 \times 6} = \frac{64}{12} = \frac{16}{3}$

∴ x:y = 16:3

Example 5: If $\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}} = \frac{4}{1}$, find x.

Solution: Apply Componendo-Dividendo

$\frac{2\sqrt{x+1}}{2\sqrt{x-1}} = \frac{4+1}{4-1} = \frac{5}{3}$

$\frac{\sqrt{x+1}}{\sqrt{x-1}} = \frac{5}{3}$

Squaring: $\frac{x+1}{x-1} = \frac{25}{9}$

$9(x+1) = 25(x-1)$

$9x + 9 = 25x - 25$

$34 = 16x$

$x = \frac{17}{8}$

6. Quick Reference

Given Property Apply
$\frac{a+b}{a-b} = \frac{m}{n}$ Componendo-Dividendo $\frac{a}{b} = \frac{m+n}{m-n}$
a:b = b:c Continued Proportion $b^2 = ac$
Find mean of a and b Mean Proportional $\sqrt{ab}$
Find third after a, b Third Proportional $\frac{b^2}{a}$

Exam Practice (PYQ Trends)

PYQ: 2023

BOARD If $\frac{8a-5b}{8c-5d} = \frac{8a+5b}{8c+5d}$, prove that $\frac{a}{b} = \frac{c}{d}$

PYQ: 2022

BOARD Using properties of proportion, solve: $\frac{\sqrt{x+5}+\sqrt{x-16}}{\sqrt{x+5}-\sqrt{x-16}} = \frac{7}{3}$