ICSE Class 10 Mathematics • Chapter 06
Statement: When a polynomial $p(x)$ is divided by $(x - a)$, the remainder is $p(a)$.
Remainder = p(a)
Example 1: Find remainder when $p(x) = x^3 - 2x^2 + 3x - 1$ is divided by $(x - 2)$.
Remainder = $p(2) = 8 - 8 + 6 - 1 = 5$
Statement: $(x - a)$ is a factor of $p(x)$ if and only if $p(a) = 0$
In other words, if $p(a) = 0$, then $a$ is a zero/root of $p(x)$.
To check if (x - a) is a factor: Simply calculate p(a). If p(a) = 0, it's a factor!
Example 2: Show that $(x - 1)$ is a factor of $x^3 - 6x^2 + 11x - 6$.
$p(1) = 1 - 6 + 11 - 6 = 0$ → Yes, $(x-1)$ is a factor ✓
Example 3: Factorise $x^3 - 6x^2 + 11x - 6$
Step 1: Try x = 1: $p(1) = 1 - 6 + 11 - 6 = 0$ ✓
So $(x - 1)$ is a factor
Step 2: Divide by $(x - 1)$:
$x^3 - 6x^2 + 11x - 6 = (x - 1)(x^2 - 5x + 6)$
Step 3: Factorise quadratic:
$x^2 - 5x + 6 = (x - 2)(x - 3)$
Answer: $(x - 1)(x - 2)(x - 3)$
Given: $(x - a)$ is a factor of polynomial $p(x)$
Use: $p(a) = 0$ to find unknown constants
Example 4: If $(x + 1)$ is a factor of $x^3 + ax^2 - x + 2$, find $a$.
Since $(x + 1)$ is a factor, $p(-1) = 0$
$(-1)^3 + a(-1)^2 - (-1) + 2 = 0$
$-1 + a + 1 + 2 = 0$
$a + 2 = 0$
$a = -2$
| Identity | Factorised Form |
|---|---|
| $a^3 + b^3$ | $(a + b)(a^2 - ab + b^2)$ |
| $a^3 - b^3$ | $(a - b)(a^2 + ab + b^2)$ |
| $a^3 + b^3 + c^3 - 3abc$ | $(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ |
Special Case: If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$
Example 5: Factorise $8x^3 + 27$
$= (2x)^3 + (3)^3$
$= (2x + 3)((2x)^2 - (2x)(3) + 3^2)$
$= (2x + 3)(4x^2 - 6x + 9)$
| Theorem | Application |
|---|---|
| Remainder Theorem | $p(x) ÷ (x-a)$ → Remainder = $p(a)$ |
| Factor Theorem | If $p(a) = 0$, then $(x-a)$ is a factor |
| Sum of Cubes | $a^3 + b^3 = (a+b)(a^2-ab+b^2)$ |
| Diff of Cubes | $a^3 - b^3 = (a-b)(a^2+ab+b^2)$ |
BOARD Using Factor Theorem, factorise: $x^3 + x^2 - 4x - 4$
BOARD Find values of a and b if $(x - 1)$ and $(x - 2)$ are factors of $x^3 + ax^2 + bx + 6$.