ICSE Class 10 Mathematics • Chapter 07
Matrix: A rectangular array of numbers arranged in rows and columns.
Order: m × n (m rows, n columns). Written as $A_{m \times n}$
Elements: $a_{ij}$ denotes element in ith row and jth column.
| Type | Description | Example |
|---|---|---|
| Row Matrix | Only 1 row (1 × n) | $[1 \quad 2 \quad 3]$ |
| Column Matrix | Only 1 column (m × 1) | $\begin{bmatrix}1\\2\\3\end{bmatrix}$ |
| Square Matrix | Rows = Columns (n × n) | $\begin{bmatrix}1&2\\3&4\end{bmatrix}$ |
| Null/Zero Matrix | All elements are 0 | $\begin{bmatrix}0&0\\0&0\end{bmatrix}$ |
| Diagonal Matrix | Non-zero only on main diagonal | $\begin{bmatrix}3&0\\0&5\end{bmatrix}$ |
| Identity Matrix (I) | 1s on diagonal, 0s elsewhere | $\begin{bmatrix}1&0\\0&1\end{bmatrix}$ |
Two matrices A and B are equal if:
Example 1: If $\begin{bmatrix}x+3&y-1\\z&w+2\end{bmatrix} = \begin{bmatrix}5&4\\-1&7\end{bmatrix}$, find x, y, z, w.
$x + 3 = 5$ → $x = 2$
$y - 1 = 4$ → $y = 5$
$z = -1$
$w + 2 = 7$ → $w = 5$
Condition: Both matrices must have the same order.
Method: Add/subtract corresponding elements.
$(A + B)_{ij} = a_{ij} + b_{ij}$
Multiply every element by the scalar k:
$(kA)_{ij} = k \cdot a_{ij}$
Example 2: If $A = \begin{bmatrix}1&2\\3&4\end{bmatrix}$ and $B = \begin{bmatrix}5&6\\7&8\end{bmatrix}$, find $2A - B$.
$2A = \begin{bmatrix}2&4\\6&8\end{bmatrix}$
$2A - B = \begin{bmatrix}2-5&4-6\\6-7&8-8\end{bmatrix} = \begin{bmatrix}-3&-2\\-1&0\end{bmatrix}$
Condition: Columns of A = Rows of B
If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$
Method: Row × Column, add products.
Steps for 2×2 Multiplication:
$\begin{bmatrix}a&b\\c&d\end{bmatrix} \times \begin{bmatrix}e&f\\g&h\end{bmatrix} = \begin{bmatrix}ae+bg&af+bh\\ce+dg&cf+dh\end{bmatrix}$
Example 3: Find $AB$ if $A = \begin{bmatrix}1&2\\3&4\end{bmatrix}$ and $B = \begin{bmatrix}2&0\\1&3\end{bmatrix}$
$AB = \begin{bmatrix}1(2)+2(1)&1(0)+2(3)\\3(2)+4(1)&3(0)+4(3)\end{bmatrix} = \begin{bmatrix}4&6\\10&12\end{bmatrix}$
| Property | Addition | Multiplication |
|---|---|---|
| Commutative | ✓ (A + B = B + A) | ✗ (AB ≠ BA in general) |
| Associative | ✓ ((A+B)+C = A+(B+C)) | ✓ ((AB)C = A(BC)) |
| Identity | A + O = A | AI = IA = A |
| Distributive | A(B + C) = AB + AC | |
Important for Exams:
Transpose of A (written A' or A^T): Rows become columns, columns become rows.
If A is $m \times n$, then A' is $n \times m$
| Operation | Condition | Result Order |
|---|---|---|
| A + B | Same order | Same as A, B |
| kA | Any matrix | Same as A |
| A × B | Cols(A) = Rows(B) | Rows(A) × Cols(B) |
| A' | Any matrix | Cols(A) × Rows(A) |
BOARD If $A = \begin{bmatrix}2&-1\\0&3\end{bmatrix}$, $B = \begin{bmatrix}-1&2\\1&0\end{bmatrix}$, find $A^2 - 2B$.
BOARD Find x and y if: $\begin{bmatrix}x&y\\4&8\end{bmatrix} + \begin{bmatrix}2&-5\\-3&6\end{bmatrix} = \begin{bmatrix}8&-2\\1&14\end{bmatrix}$