ICSE Class 10 Mathematics • Chapter 12
| Solid | CSA | TSA | Volume |
|---|---|---|---|
| Cylinder | $2\pi rh$ | $2\pi r(r+h)$ | $\pi r^2h$ |
| Cone | $\pi rl$ | $\pi r(r+l)$ | $\frac{1}{3}\pi r^2h$ |
| Sphere | $4\pi r^2$ | $\frac{4}{3}\pi r^3$ | |
| Hemisphere | $2\pi r^2$ | $3\pi r^2$ | $\frac{2}{3}\pi r^3$ |
| Hollow Cylinder | $2\pi h(R+r)$ | $2\pi(R+r)(h+R-r)$ | $\pi h(R^2-r^2)$ |
Key Relationships:
Example 1: A cylinder has radius 7 cm and height 10 cm. Find CSA, TSA, and Volume.
CSA = $2 \times \frac{22}{7} \times 7 \times 10 = 440$ cm²
TSA = $2 \times \frac{22}{7} \times 7 \times (7+10) = 44 \times 17 = 748$ cm²
Volume = $\frac{22}{7} \times 49 \times 10 = 1540$ cm³
Example 2: A cone has radius 6 cm and height 8 cm. Find slant height, CSA, and volume.
$l = \sqrt{36 + 64} = \sqrt{100} = 10$ cm
CSA = $\pi \times 6 \times 10 = 60\pi \approx 188.57$ cm²
Volume = $\frac{1}{3} \times \pi \times 36 \times 8 = 96\pi \approx 301.71$ cm³
| Sphere | Hemisphere | |
|---|---|---|
| Surface Area | $4\pi r^2$ | CSA = $2\pi r^2$, TSA = $3\pi r^2$ |
| Volume | $\frac{4}{3}\pi r^3$ | $\frac{2}{3}\pi r^3$ |
Strategy:
Example 3: A toy is shaped like a cone mounted on a hemisphere. Radius = 3.5 cm, total height = 15.5 cm. Find TSA.
Step 1: Height of cone = 15.5 − 3.5 = 12 cm
Step 2: $l = \sqrt{3.5^2 + 12^2} = \sqrt{12.25 + 144} = \sqrt{156.25} = 12.5$ cm
Step 3: TSA = CSA of cone + CSA of hemisphere (base is hidden)
= $\pi rl + 2\pi r^2 = \pi r(l + 2r) = \frac{22}{7} \times 3.5 \times (12.5 + 7)$
= $11 \times 19.5 = 214.5$ cm²
Volume of original solid = Volume of new solid(s)
When a solid is melted and recast, only volume is conserved!
Example 4: A metallic sphere of radius 6 cm is melted and recast into a cone of radius 12 cm. Find height of cone.
Volume of sphere = Volume of cone
$\frac{4}{3}\pi (6)^3 = \frac{1}{3}\pi (12)^2 \times h$
$\frac{4}{3} \times 216 = \frac{1}{3} \times 144 \times h$
$288 = 48h$
$h = 6$ cm
Example 5: How many spherical balls of radius 1 cm can be made from a sphere of radius 5 cm?
Volume of big sphere = $\frac{4}{3}\pi (5)^3 = \frac{500\pi}{3}$
Volume of small sphere = $\frac{4}{3}\pi (1)^3 = \frac{4\pi}{3}$
Number of balls = $\frac{500\pi/3}{4\pi/3} = \frac{500}{4} = 125$ balls
| From | To | Multiply by |
|---|---|---|
| cm³ | litres | ÷ 1000 |
| m³ | litres | × 1000 |
| cm³ | m³ | ÷ 10⁶ |
| Solid | Volume Formula | Key Relation |
|---|---|---|
| Cylinder | $\pi r^2 h$ | Base × Height |
| Cone | $\frac{1}{3}\pi r^2 h$ | $\frac{1}{3}$ cylinder |
| Sphere | $\frac{4}{3}\pi r^3$ | 4 cones (same r, h) |
| Hemisphere | $\frac{2}{3}\pi r^3$ | Half sphere |
BOARD A solid is in the form of a cone standing on a hemisphere with both their radii being equal to 7 cm. If the height of cone is 5 cm, find volume of the solid.
BOARD A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into toys in shape of cones of radius 3 cm and height 9 cm. Find number of toys.