Trigonometry

ICSE Class 10 Mathematics • Chapter 13

1. Trigonometric Ratios

[Diagram: Right triangle ABC with right angle at B, angle θ at A, opposite side BC, adjacent side AB, hypotenuse AC]

In a right-angled triangle, for angle θ:

Ratio Formula Reciprocal
sin θ $\frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{P}{H}$ $\csc\theta = \frac{H}{P}$
cos θ $\frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{B}{H}$ $\sec\theta = \frac{H}{B}$
tan θ $\frac{\text{Opposite}}{\text{Adjacent}} = \frac{P}{B}$ $\cot\theta = \frac{B}{P}$

Memory Tricks:

2. Standard Angle Values

θ 30° 45° 60° 90°
sin θ 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ 1
cos θ 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 0
tan θ 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$
cot θ $\sqrt{3}$ 1 $\frac{1}{\sqrt{3}}$ 0
sec θ 1 $\frac{2}{\sqrt{3}}$ $\sqrt{2}$ 2
cosec θ 2 $\sqrt{2}$ $\frac{2}{\sqrt{3}}$ 1

Quick Pattern for sin θ: $\sin 0° = \frac{\sqrt{0}}{2}$, $\sin 30° = \frac{\sqrt{1}}{2}$, $\sin 45° = \frac{\sqrt{2}}{2}$, $\sin 60° = \frac{\sqrt{3}}{2}$, $\sin 90° = \frac{\sqrt{4}}{2}$

cos θ = sin θ in reverse order!

3. Fundamental Trigonometric Identities

Pythagorean Identities:

  1. $\sin^2\theta + \cos^2\theta = 1$
  2. $1 + \tan^2\theta = \sec^2\theta$
  3. $1 + \cot^2\theta = \csc^2\theta$

Derived Forms (Rearrangements)

From Identity Derived Forms
$\sin^2\theta + \cos^2\theta = 1$ $\sin^2\theta = 1 - \cos^2\theta$
$\cos^2\theta = 1 - \sin^2\theta$
$1 + \tan^2\theta = \sec^2\theta$ $\tan^2\theta = \sec^2\theta - 1$
$\sec^2\theta - \tan^2\theta = 1$
$1 + \cot^2\theta = \csc^2\theta$ $\cot^2\theta = \csc^2\theta - 1$
$\csc^2\theta - \cot^2\theta = 1$

Quotient Identities:

$\tan\theta = \frac{\sin\theta}{\cos\theta}$ $\qquad$ $\cot\theta = \frac{\cos\theta}{\sin\theta}$

4. Complementary Angles (90° − θ)

Ratio Complementary Relation
$\sin(90° - \theta)$ $= \cos\theta$
$\cos(90° - \theta)$ $= \sin\theta$
$\tan(90° - \theta)$ $= \cot\theta$
$\cot(90° - \theta)$ $= \tan\theta$
$\sec(90° - \theta)$ $= \csc\theta$
$\csc(90° - \theta)$ $= \sec\theta$

Co-function Rule: "Co" goes with "Co" → sin↔cos, tan↔cot, sec↔csc

5. Proving Trigonometric Identities

Strategy for Proving LHS = RHS:
  1. Choose the more complex side (usually LHS)
  2. Express everything in terms of sin θ and cos θ
  3. Use algebraic operations (factoring, taking LCM, etc.)
  4. Apply fundamental identities
  5. Simplify to match the other side

Example 1: Prove: $\frac{1 + \tan^2\theta}{1 + \cot^2\theta} = \tan^2\theta$

Proof:

LHS = $\frac{1 + \tan^2\theta}{1 + \cot^2\theta}$

= $\frac{\sec^2\theta}{\csc^2\theta}$ (using identities)

= $\frac{1/\cos^2\theta}{1/\sin^2\theta}$

= $\frac{\sin^2\theta}{\cos^2\theta}$

= $\tan^2\theta$ = RHS ✓

Example 2: Prove: $\frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} = 2\csc\theta$

Proof:

LHS = $\frac{\sin^2\theta + (1 + \cos\theta)^2}{\sin\theta(1 + \cos\theta)}$

= $\frac{\sin^2\theta + 1 + 2\cos\theta + \cos^2\theta}{\sin\theta(1 + \cos\theta)}$

= $\frac{(\sin^2\theta + \cos^2\theta) + 1 + 2\cos\theta}{\sin\theta(1 + \cos\theta)}$

= $\frac{1 + 1 + 2\cos\theta}{\sin\theta(1 + \cos\theta)}$

= $\frac{2(1 + \cos\theta)}{\sin\theta(1 + \cos\theta)}$

= $\frac{2}{\sin\theta} = 2\csc\theta$ = RHS ✓

6. Heights and Distances

Angle of Elevation: Angle made by line of sight with horizontal when looking UP at an object.

Angle of Depression: Angle made by line of sight with horizontal when looking DOWN at an object.

[Diagram: Tower with observer on ground showing angle of elevation; Observer on building looking down showing angle of depression]

Key Properties:

Problem Types

Type Given Formula
Find Height Distance, Angle $\tan\theta = \frac{\text{Height}}{\text{Distance}}$ → Height = Distance × tan θ
Find Distance Height, Angle Distance = Height × cot θ
Two Angles Moving towards Height from $\tan\theta_1 - \tan\theta_2$ relation

Example 3: From a point 30m from the base of a tower, the angle of elevation of the top is 60°. Find the height.

Solution:

$\tan 60° = \frac{h}{30}$

$\sqrt{3} = \frac{h}{30}$

$h = 30\sqrt{3} \approx$ 51.96 m

Example 4: From the top of a 50m building, the angles of depression to the top and bottom of a tower are 45° and 60°. Find the height of the tower.

Solution:

Let tower height = h, horizontal distance = d

From 60° (to bottom of tower): $\tan 60° = \frac{50}{d}$ → $d = \frac{50}{\sqrt{3}}$

From 45° (to top of tower): $\tan 45° = \frac{50-h}{d}$

$1 = \frac{50-h}{50/\sqrt{3}}$

$\frac{50}{\sqrt{3}} = 50 - h$

$h = 50 - \frac{50}{\sqrt{3}} = 50\left(1 - \frac{1}{\sqrt{3}}\right) = 50 \times \frac{\sqrt{3}-1}{\sqrt{3}}$

$h \approx$ 21.13 m

7. Quick Reference Formulas

Category Formulas
Pythagorean $\sin^2\theta + \cos^2\theta = 1$, $\sec^2\theta - \tan^2\theta = 1$, $\csc^2\theta - \cot^2\theta = 1$
Reciprocal $\sin\theta\cdot\csc\theta = 1$, $\cos\theta\cdot\sec\theta = 1$, $\tan\theta\cdot\cot\theta = 1$
Quotient $\tan\theta = \frac{\sin\theta}{\cos\theta}$, $\cot\theta = \frac{\cos\theta}{\sin\theta}$
Complementary $\sin(90°-\theta) = \cos\theta$, $\tan(90°-\theta) = \cot\theta$, $\sec(90°-\theta) = \csc\theta$

Exam Practice (PYQ Trends)

PYQ: 2023

BOARD Prove: $\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \sec A \cdot \csc A$

PYQ: 2022

BOARD From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 20m high building are 45° and 60° respectively. Find the height of the tower.

Additional

HOTS If $\sin\theta + \cos\theta = \sqrt{2}\cos\theta$, show that $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$