ICSE Class 10 Mathematics • Chapter 13
In a right-angled triangle, for angle θ:
| Ratio | Formula | Reciprocal |
|---|---|---|
| sin θ | $\frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{P}{H}$ | $\csc\theta = \frac{H}{P}$ |
| cos θ | $\frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{B}{H}$ | $\sec\theta = \frac{H}{B}$ |
| tan θ | $\frac{\text{Opposite}}{\text{Adjacent}} = \frac{P}{B}$ | $\cot\theta = \frac{B}{P}$ |
Memory Tricks:
| θ | 0° | 30° | 45° | 60° | 90° |
|---|---|---|---|---|---|
| sin θ | 0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1 |
| cos θ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ | 0 |
| tan θ | 0 | $\frac{1}{\sqrt{3}}$ | 1 | $\sqrt{3}$ | ∞ |
| cot θ | ∞ | $\sqrt{3}$ | 1 | $\frac{1}{\sqrt{3}}$ | 0 |
| sec θ | 1 | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ | 2 | ∞ |
| cosec θ | ∞ | 2 | $\sqrt{2}$ | $\frac{2}{\sqrt{3}}$ | 1 |
Quick Pattern for sin θ: $\sin 0° = \frac{\sqrt{0}}{2}$, $\sin 30° = \frac{\sqrt{1}}{2}$, $\sin 45° = \frac{\sqrt{2}}{2}$, $\sin 60° = \frac{\sqrt{3}}{2}$, $\sin 90° = \frac{\sqrt{4}}{2}$
cos θ = sin θ in reverse order!
Pythagorean Identities:
| From Identity | Derived Forms |
|---|---|
| $\sin^2\theta + \cos^2\theta = 1$ | $\sin^2\theta = 1 - \cos^2\theta$ |
| $\cos^2\theta = 1 - \sin^2\theta$ | |
| $1 + \tan^2\theta = \sec^2\theta$ | $\tan^2\theta = \sec^2\theta - 1$ |
| $\sec^2\theta - \tan^2\theta = 1$ | |
| $1 + \cot^2\theta = \csc^2\theta$ | $\cot^2\theta = \csc^2\theta - 1$ |
| $\csc^2\theta - \cot^2\theta = 1$ |
Quotient Identities:
$\tan\theta = \frac{\sin\theta}{\cos\theta}$ $\qquad$ $\cot\theta = \frac{\cos\theta}{\sin\theta}$
| Ratio | Complementary Relation |
|---|---|
| $\sin(90° - \theta)$ | $= \cos\theta$ |
| $\cos(90° - \theta)$ | $= \sin\theta$ |
| $\tan(90° - \theta)$ | $= \cot\theta$ |
| $\cot(90° - \theta)$ | $= \tan\theta$ |
| $\sec(90° - \theta)$ | $= \csc\theta$ |
| $\csc(90° - \theta)$ | $= \sec\theta$ |
Co-function Rule: "Co" goes with "Co" → sin↔cos, tan↔cot, sec↔csc
Example 1: Prove: $\frac{1 + \tan^2\theta}{1 + \cot^2\theta} = \tan^2\theta$
Proof:
LHS = $\frac{1 + \tan^2\theta}{1 + \cot^2\theta}$
= $\frac{\sec^2\theta}{\csc^2\theta}$ (using identities)
= $\frac{1/\cos^2\theta}{1/\sin^2\theta}$
= $\frac{\sin^2\theta}{\cos^2\theta}$
= $\tan^2\theta$ = RHS ✓
Example 2: Prove: $\frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} = 2\csc\theta$
Proof:
LHS = $\frac{\sin^2\theta + (1 + \cos\theta)^2}{\sin\theta(1 + \cos\theta)}$
= $\frac{\sin^2\theta + 1 + 2\cos\theta + \cos^2\theta}{\sin\theta(1 + \cos\theta)}$
= $\frac{(\sin^2\theta + \cos^2\theta) + 1 + 2\cos\theta}{\sin\theta(1 + \cos\theta)}$
= $\frac{1 + 1 + 2\cos\theta}{\sin\theta(1 + \cos\theta)}$
= $\frac{2(1 + \cos\theta)}{\sin\theta(1 + \cos\theta)}$
= $\frac{2}{\sin\theta} = 2\csc\theta$ = RHS ✓
Angle of Elevation: Angle made by line of sight with horizontal when looking UP at an object.
Angle of Depression: Angle made by line of sight with horizontal when looking DOWN at an object.
Key Properties:
| Type | Given | Formula |
|---|---|---|
| Find Height | Distance, Angle | $\tan\theta = \frac{\text{Height}}{\text{Distance}}$ → Height = Distance × tan θ |
| Find Distance | Height, Angle | Distance = Height × cot θ |
| Two Angles | Moving towards | Height from $\tan\theta_1 - \tan\theta_2$ relation |
Example 3: From a point 30m from the base of a tower, the angle of elevation of the top is 60°. Find the height.
Solution:
$\tan 60° = \frac{h}{30}$
$\sqrt{3} = \frac{h}{30}$
$h = 30\sqrt{3} \approx$ 51.96 m
Example 4: From the top of a 50m building, the angles of depression to the top and bottom of a tower are 45° and 60°. Find the height of the tower.
Solution:
Let tower height = h, horizontal distance = d
From 60° (to bottom of tower): $\tan 60° = \frac{50}{d}$ → $d = \frac{50}{\sqrt{3}}$
From 45° (to top of tower): $\tan 45° = \frac{50-h}{d}$
$1 = \frac{50-h}{50/\sqrt{3}}$
$\frac{50}{\sqrt{3}} = 50 - h$
$h = 50 - \frac{50}{\sqrt{3}} = 50\left(1 - \frac{1}{\sqrt{3}}\right) = 50 \times \frac{\sqrt{3}-1}{\sqrt{3}}$
$h \approx$ 21.13 m
| Category | Formulas |
|---|---|
| Pythagorean | $\sin^2\theta + \cos^2\theta = 1$, $\sec^2\theta - \tan^2\theta = 1$, $\csc^2\theta - \cot^2\theta = 1$ |
| Reciprocal | $\sin\theta\cdot\csc\theta = 1$, $\cos\theta\cdot\sec\theta = 1$, $\tan\theta\cdot\cot\theta = 1$ |
| Quotient | $\tan\theta = \frac{\sin\theta}{\cos\theta}$, $\cot\theta = \frac{\cos\theta}{\sin\theta}$ |
| Complementary | $\sin(90°-\theta) = \cos\theta$, $\tan(90°-\theta) = \cot\theta$, $\sec(90°-\theta) = \csc\theta$ |
BOARD Prove: $\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \sec A \cdot \csc A$
BOARD From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 20m high building are 45° and 60° respectively. Find the height of the tower.
HOTS If $\sin\theta + \cos\theta = \sqrt{2}\cos\theta$, show that $\cos\theta - \sin\theta = \sqrt{2}\sin\theta$